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Abstract

Monte Carlo calculations were made to evaluate the intrinsic viscosity ½h� and hydrodynamic radius RH along with the mean square radius

of gyration kS2l for linear and star polymers with the arm number f ¼ 3; 4, 6, and 8 on a simple cubic lattice. For the hydrodynamic

calculation, Zimm’s method based on the rigid-body approximation was used. The ensemble averages were taken according to the Boltzman

factor with the contacting energy between segments, which was chosen to be 0.275 for the theta condition, multiplied by the number of

contacts among the chain. The ratios gh ; ½h�star=½h�linear and gH ; ðRHÞstar=ðRHÞlinear calculated agreed with experimental data for theta

solvent systems within 3.5 and 2.5%, respectively, where the subscripts describe the structure of polymer chain. The hydrodynamic factors F

and r defined by ½h�M=ð6kS2lÞ3=2 and kS2l1=2=RH; respectively, with the molecular weight M obtained from the simulation for linear and star

polymers with f ¼ 4 and 6 were also close to experimental values. It was concluded that most of the error of analytical theories, which fail to

predict hydrodynamic properties for star polymers, comes from the preaveraging approximation of the Oseen tensor.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The intrinsic viscosity ½h� and the hydrodynamic radius

RH are basic hydrodynamic properties useful for character-

izing polymer molecules in dilute solution. The hydrodyn-

amic factors [1–3] F ¼ ½h�M=ð6kS2lÞ3=2 (the Flory–Fox

factor [4]) and r ¼ kS2l1=2=RH relating to these properties are

known to change with polymer architecture [5–8], where M

is the molecular weight and kS2l the mean-square radius of

gyration. Although it is important to establish the relation-

ship between these factors and the branching structure of

polymer, available theories for hydrodynamic properties fail

to predict experimental results even for star polymers [9,10],

which may be considered to have the simplest branched

architecture.

These theories invoke some approximations in solving

the hydrodynamic equation. Among the approximations,

preaveraging of the Oseen hydrodynamic tensor is thought

to cause serious errors in the results. For linear chains, the

errors from the preaveraging Oseen tensor on F and r were

estimated to be about 10% [11–14]. The theoretical errors

seem much more serious for star polymers than those for

linear polymers. The deviation of the theoretical values for

the factors gh ð; ½h�star=½h�linear at constant M) and gH ð;
ðRHÞstar=ðRHÞlinear at constant M) based on the preaveraging

approximation from the experimental values becomes larger

[5–8] with increasing the number of arm f ; where the

subscripts, star and linear, show the type of polymer.

Zimm [14] showed that the Kirkwood – Riseman

equation [15] can be solved without preaveraging the

Oseen tensor to obtain the dimensionless intrinsic viscosity

E (see Eq. (2) for the definition) and RH; if the chain

conformation is once determined by the Monte Carlo

method, under the assumption that the conformation is not

changed under the shear flow (the rigid-body approxi-

mation). Although this method was applied to star polymer

systems [14,16], the values for F and r without preaver-

aging Oseen tensor are not established yet as functions of f :
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We made Monte Carlo calculations [17] to evaluate E

and RH for linear and star polymers on a simple cubic lattice

in the self-avoiding condition according to Zimm’s scheme.

The resulted values for F and r extrapolated to the infinitely

large segment number N were very close to the experimen-

tal values for good solvent systems to reach the conclusion

that the preaveraging of the Oseen tensor causes the most of

the error and that the rigid-body approximation is less

serious. To confirm this, it is important to do similar

calculations on polymers in the Q condition to compare the

results with the theoretical values for ½h� and RH; which

ignore the intramolecular excluded-volume effects.

In this paper, we evaluate E and RH for linear and star

polymers with f ¼ 3; 4, 6, and 8 on a simple cubic lattice at

the theta condition to determine the values of F and r

without the preaveraging approximation as functions of f ;

which are compared with the theoretical and experimental

values.

2. Calculation method

Self-avoiding linear and three-, four-, six-, and eight-arm

star chains were generated on a simple cubic lattice by the

enrichment algorithm [18,19], which enables us to produce

star polymer samples efficiently. In this algorithm, the

production of stars begins at a polyhedral core with f

segments set on a simple cubic lattice. In the first step of the

production, one segment is added to each segment on the

core according to a pseudorandom number, to obtain a

group of a large number of samples with the length of an

arm being 1. In the next step, an appropriate number of

samples are randomly chosen from the group and one more

segment is added to each arm. This operation is repeated

until another group of samples is made. After l steps, a

group consisting of ml polymers having arms with the length

l is obtained for the calculation of physical quantities. At

each step, all the polymers are checked to fulfil the self-

avoiding condition and those which do not satisfy the

condition are discarded. The sample number ml was

increased with increasing l and kept from 30,000 to 75,000.

For each sample, the number of contacts between non-

bonding segments and kS2l were calculated. Then, the

Kirkwood–Riseman equation [15] was solved according to

the Zimm method [14] to obtain the velocity uz (in the z

direction) of the center of the mass and the dimensionless

intrinsic viscosity E: The former is related to the

hydrodynamic radius RH by

RH ¼ Fz=6ph0uz ð1Þ

where Fz and h0 are the force exerted on the polymer in the

z-direction (set to be N) and the solvent viscosity (set to be

1), respectively. The latter is related to ½h� by

½h� ¼ NANb3E=2M ð2Þ

where M is the molecular weight, NA the Avogadro

constant, N; the number of segments in a molecule, and b

is the bond length (set to be 1). Computations were made for

the hydrodynamic radius a of each segment to be 0.25 and

0.5. Zimm [14] used the Oseen hydrodynamic tensor for the

segment–segment distance r lager than the cross over value

Rc ¼ 1:707a and used a constant tensor for r , Rc:

However, in our calculation, we need not consider the

latter case because Rc is smaller than 1 for both a values and

r is always larger than 1. When a ¼ 0:5; we sometimes (less

than 1% of the results) obtained negative values of E: In

such cases, the polymer chains took crumpled shapes.

Probably, the hydrodynamic equation cannot be solved

correctly for such polymer conformations. Those unphysical

values were ignored.

To realize the theta condition on a lattice, it is essential to

consider the interaction between segments which are placed

on neighboring sites. Assuming the interaction energy 21

for the contact of two segments, the total energy for the ith

chain can be evaluated multiplying the number of

intramolecular contacts by 21: Then, the ensemble average

of the quantity A (kS2l; E; and uz) was taken by

A ¼
X

i

Ai expð1qi=kTÞ=
X

i

expð1qi=kTÞ ð3Þ

with the aid of the Boltzman factor, where Ai is A for the ith

chain, qi the number of contacts among non-bonding

segments in the chain, and kT has the usual meaning.

It is known that kS2l1=2 of lattice chains with 1=kT ¼

0:275 scales according to N0:5 [20–22], as is that for the

Gaussian chains. Janssens and Bellemans [23] calculated

the second virial coefficient A2 for linear chains on a simple

cubic lattice and found that A2 for the infinite segment

number vanishes by choosing 1=kT ¼ 0:27; which essen-

tially agrees with the value determined from kS2l1=2: Then,

we use 1=kT ¼ 0:275 as the Q condition for the present

calculation.

3. Results and discussion

Fig. 1 shows the plots of kS2l=N against N for different f :

It can be seen that kS2l=N for linear chains ðf ¼ 2Þ increases

with N and approaching 0.33, as was observed by Bruns

[24]. This can be regarded as the non-Gaussian behavior

until the polymer reaches the asymptotic behavior. On the

other hand, kS2l=N of star polymers for each f is almost

constant. This may be due to the cancellation of the non-

Gaussian behavior and the core effect, which increases kS2l
at small N: The values of kS2l=N for different f are given in

the second column of Table 1. The factor gS defined by

kS2lstar=kS2llinear (at constant N) were calculated from these

kS2l=N values to be 0.76, 0.61, 0.45, and 0.33 for f ¼ 3; 4, 6,

and 8, respectively. These gS values obtained are close to

those for star polymers with flexible arms (0.778, 0.625,

0.444, and 0.344 for f ¼ 3; 4, 6 and 8, respectively)

K. Shida et al. / Polymer 45 (2004) 1729–17331730



calculated from the Zimm–Stockmayer equation [25]

gS ¼ ð3f 2 2Þ=f 2 ð4Þ

Then, we confirm that this simulation corresponds to the

theta condition.

Fig. 2 represents E=N1=2 plotted against N for a ¼ 0:5 and

0.25. For a ¼ 0:5; it is seen that the values for each f are

almost constant regardless of N being consistent with the

behavior of flexible polymers in the theta condition.

However, for a ¼ 0:25; E=N1=2 at each f increases with N:

It seems that larger segment number is needed for this a to

observe the asymptotic behavior. The numerical results of

½h� based on Zimm’s bead-spring model [26] also show that

the segment number at which ½h� reaches its asymptotic

behavior depends on a [27]. The values of E=N1=2 at a ¼ 0:5

for different f are given in the third column of Table 1. They

enable us to calculate gh; which is plotted against f (unfilled

circles) in Fig. 3. We note that close values were obtained

when we calculated gh from E=N1=2 for a ¼ 0:25 at large N:

The solid line in Fig. 3 indicates the calculated values from

the Zimm–Kilb theory [9]

gh ¼ ð2=f Þ3=2½0:390ðf 2 1Þ þ 0:196�=0:586 ð5Þ

which is based on the preaveraging approximation of the

Oseen tensor. It can be seen that the theoretical values

overestimate gh as was already pointed out [5–8]. The

values from the current simulation agree with the exper-

imental values [6,8] represented by the filled symbols within

3.5%. The dashed line in the figure indicates the values from

Roovers’ empirical equation [6]

gh ¼ ½ð3f 2 2Þ=f 2�0:58 ð6Þ

which describes the experimental data and our simulation

values as well.

Segment number dependence of RH=N
1=2 for a ¼ 0:25

and 0.5 is shown in Fig. 4. As is the case of E; the values for

each f with a ¼ 0:5 are almost constant, although those with

a ¼ 0:25 increase with N: The values of RH=N
1=2 for a ¼ 0:5

are given in the fourth column of Table 1, which allow us to

calculate gH: The gH values for a ¼ 0:25 estimated at large

N essentially agree with those for a ¼ 0:5: Plots of gH

against f are shown by the unfilled circles in Fig. 5, in which

some experimental values [6,8] are indicated by the filled

circles. The Monte Carlo values agree with the experimental

values within 2.5% except the data for f ¼ 3: The solid

line in the figure shows the calculated values from the

Fig. 1. Mean-square radii of gyration kS2l divided by the segment number N

for linear and star polymers on the simple cubic lattice with different arm

number f plotted against N : circles, linear chain; triangles up, f ¼ 3;

squares, f ¼ 4; triangles down, f ¼ 6; diamonds, f ¼ 8:

Table 1

Results of mean-square radius of gyration, dimensionless intrinsic

viscosity, and hydrodynamic radius from the Monte Carlo calculations

for a ¼ 0:5

f kS2l=N E=N1=2 RH=N
1=2

2 0.33 2.3 0.45

3 0.25 2.0 0.44

4 0.20 1.7 0.43

6 0.15 1.5 0.41

8 0.11 1.3 0.38

Fig. 2. Dimensionless intrinsic viscosities E divided by N1=2 for linear and

star polymers on the simple cubic lattice with different f plotted against N:

Symbols are the same as those in Fig. 1.

Fig. 3. Plots of gh vs. f for star chains on a simple cubic lattice (unfilled

circles). The other symbols represent experimental data [6,8] for theta

solvent systems: filled circles, polystyrene in cyclohexane; filled triangles,

polyisoprene in dioxane; filled squares, polybutadiene in dioxane. Solid and

dashed lines indicate calculated values from Eqs (5) and (6), respectively.
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Stockmayer and Fixman equation [10]

gH ¼ f 1=2
=½2 2 f þ 21=2ðf 2 1Þ� ð7Þ

which is based on the preaveraging approximation. The

theoretical curve is far below the current Monte Carlo

values. On the other hand, the Roovers empirical equation

[6]

gH ¼ f 1=4
=½2 2 f þ 21=2ðf 2 1Þ�1=2 ð8Þ

fits the Monte Carlo and experimental values very well as is

shown by the dashed line in the figure.

The values of F and r calculated from the values E=N1=2

and RH=N
1=2; respectively, along with kS2l=N are summar-

ized in Table 2. The table also contains the preaveraging-

approximation values evaluated from Fstar ¼

Flinearðgh=g
3=2
S Þ and rstar ¼ rlinearðg

1=2
S =gHÞ with Eqs. (4), (5)

and (7) and the original Kirkwood–Riseman values [1] of

Flinear ¼ 2:87 £ 1023 mol21 and rlinear ¼ 1:48: For f ¼ 2;

the value of F by the simulation is about 13% larger and that

of r is about 14% smaller than the theoretical value being

consistent with the results of Zimm [14].

For both F and r; difference between the values from the

preaveraged theories and those from the simulation

increases with increasing f : Freire et al. [16] made similar

calculations on linear and star polymers with Gaussian arms

according to the rigid-body approximation (called upper

bound calculation) and obtained F=1023 mol21 ¼ 2:54 (for

f ¼ 2) and 4.9 (for f ¼ 6) and r ¼ 1:27 (for f ¼ 2) and 0.98

(for f ¼ 6) in the limit of N !1: Their values are quite

close to our results. They also made another calculation [28]

(called lower bound calculation) based on Fixman’s method

[29] without using the rigid-body approximation. They

obtained F=1023 mol21 ¼ 2:54 for linear flexible chains

whose segments interact with the Lennard-Jones potential.

However, their value of F=1023 mol21 ¼ 2:15 in the same

paper for the non-interacting linear Gaussian chain is too

small compared to experimental values for flexible poly-

mers in theta solvents.

In comparison with linear polymers, F and r for star

polymers in the theta state are as yet investigated very much

neither experimentally nor theoretically. Experimental

values [30–38] in theta solvents are summarized in Table

3. The literature values of F for star-polystyrene (PS) in

cyclohexane (CH) with f ¼ 3 and 4 are around 3.0 and 3.7

(except Berry’s old data [31]), respectively, which are close

to our Monte Carlo results. Values of Roovers and Bywater

[32] for six-arm PS in CH are close to the Monte Carlo

Fig. 4. Hydrodynamic radii RH divided by N1=2 for linear and star polymers

on the simple cubic lattice with different f plotted against N: Symbols are

the same as those in Fig. 1.

Fig. 5. Plots of gH vs. f for star chains on a simple cubic lattice. Symbols are

the same as those in Fig. 3. Solid and dashed lines indicate calculated values

from Eqs. (7) and (8), respectively.

Table 2

F and r obtained from the Monte Carlo calculations compared with values

for the preaveraged theories

f F=1023 mol21 r

Monte Carlo Theoretical Monte Carlo Theoretical

2 2.5 2.87 1.28 1.48

3 3.5 3.79 1.11 1.38

4 3.9 4.78 1.04 1.31

6 5.3 6.81 0.94 1.23

8 7.3 8.87 0.87 1.19

Table 3

Experimental values of F and r for star polymers with f arms in theta

solvents

f System F=1023 mol21 r No. of samples References

3 PS/CH 3.0 – 4 [30]

3 PS/CH – 1.13 2 [38]

4 PS/CH 4.6 – 1 [31]

4 PS/CH 3.7 1.09 3 [32,33]

4 PS/CH 3.7 – 4 [34]

4 PIP/Diox 3.6 – 3 [35]

6 PS/CH 5.4 – 3 [32]

6 PS/CH 4.4 – 4 [36]

6 PIP/Diox 4.9 – 3 [35]

6 PS/CH – 0.92 1 [33]

8 PS/CH 4.6 – 5 [37]
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value, although they are somewhat larger than the values of

Okumoto et al. [36] for PS in CH and Hadjichristidis and

Roovers [35] for polyisoprene (PIP) in Dioxiane (Diox).

The experimental value of Bauer et al. [37] for eight-arm

star PIP in Diox seems rather small. The values for r in

Table 3 are quite close to our Monte Carlo values.

In conclusion, our hydrodynamic calculations using the

Zimm method based on the rigid-body approximation gave

very close values of F and r to the experimental ones for

star polymers in theta solvents, although theories invoking

the preaveraging approximation give values far from the

experimental values. This shows that the preaveraging

approximation of the Oseen tensor made most of the error

on these hydrodynamic factors and that the error from the

rigid-body approximation is minor. Theories of F and r for

star polymers without invoking the preaveraging approxi-

mation have not been submitted yet and are eagerly desired.
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